Bignozzi, V., Merlo, L., & Petrella, L. (2024). Inter-order
relations between equivalence for lp-quantiles of the student’s t
distribution. Insurance: Mathematics and Economics,
116, 44–50.
Foroni, B., Merlo, L., & Petrella, L. (2024). Expectile hidden
markov regression models for analyzing cryptocurrency returns.
Statistics and Computing, 34(2), 66.
Foroni, B., Merlo, L., & Petrella, L. (2024). Quantile and expectile
copula-based hidden markov regression models for the analysis of the
cryptocurrency market. Statistical Modelling, 19.
Candila, V., Gallo, G. M., & Petrella, L. (2023). Mixed-frequency
quantile regressions to forecast value-at-risk and expected shortfall.
Annals of Operations Research, 1–34.
Laporta, A. G., Levantesi, S., & Petrella, L. (2023). Neural
networks for quantile claim amount estimation: A quantile regression
approach. Annals of Actuarial Science, 1–21.
Merlo, L., Dominici, F., Petrella, L., Salvati, N., & Wu, X. (2023).
Estimating causal quantile exposure response functions via matching.
arXiv Preprint arXiv:2308.01628.
Merlo, L., Geraci, M., & Petrella, L. (2023). Quantile mixed
graphical models with an application to mass public shootings in the
united states. arXiv Preprint arXiv:2309.05084.
Merlo, L., Maruotti, A., & Petrella, L. (2023). Two-part quantile
regression models for semi-continuous longitudinal data: A finite
mixture approach. Statistical Modelling, 22(6),
485–508.
Merlo, L., Petrella, L., Salvati, N., & Tzavidis, N. (2023). Unified
unconditional regression for multivariate quantiles, m-quantiles and
expectiles. Journal of the American Statistical Association,
1–26.
Ranalli, M. G., Salvati, N., Petrella, L., & Pantalone, F. (2023).
M-quantile regression shrinkage and selection via the lasso and elastic
net to assess the effect of meteorology and traffic on air quality.
Biometrical Journal, 2100355.
Andreani, M., Candila, V., & Petrella, L. (2022). Quantile
regression forest for value-at-risk forecasting via mixed-frequency
data. 13–18.
Bignozzi, V., Merlo, L., & Petrella, L. (2022). Inter-order
relations between moments of a student distribution, with an application
to -quantiles. arXiv Preprint arXiv:2209.12855.
Foroni, B., Merlo, L., & Petrella, L. (2022). Analyzing the
correlation structure of financial markets using a quantile graphical
model. Book of the Short Papers, 852–857.
Foroni, B., Merlo, L., & Petrella, L. (2022). Graphical models for
commodities: A quantile approach. Methods and Applications in
Fluorescence, 253–259.
Merlo, L., Petrella, L., & Salvati, N. (2022). Modeling
unconditional m-quantiles in a regression framework. 1692–1695.
Merlo, L., Petrella, L., & Tzavidis, N. (2022). Quantile mixed
hidden markov models for multivariate longitudinal data: An application
to children’s strengths and difficulties questionnaire scores.
Journal of the Royal Statistical Society Series C: Applied
Statistics, 71.
Scarci, M., Raveglia, F., Bortolotti, L., Benvenuti, M., Merlo, L.,
Petrella, L., &... (2022). COVID-19 after lung resection in northern
italy. Seminars in Thoracic and Cardiovascular Surgery,
34(2), 726–732.
Andreani, M., Candila, V., Morelli, G., & Petrella, L. (2021).
Multivariate analysis of energy commodities during the COVID-19
pandemic: Evidence from a mixed-frequency approach. Risks,
9(8), 144.
Foroni, B., Morelli, G., & Petrella, L. (2021). The network of
commodity risk. Energy Systems, 1–47.
Maruotti, A., Petrella, L., & Sposito, L. (2021). Hidden
semi-markov-switching quantile regression for time series.
Computational Statistics & Data Analysis, 159,
107208.
Merlo, L., Petrella, L., & Raponi, V. (2021). Forecasting VaR and ES
using a joint quantile regression and its implications in portfolio
allocation. Journal of Banking & Finance, 133,
106248.
Merlo, L., Petrella, L., Salvati, N., & Tzavidis, N. (2021).
Marginal m-quantile regression for multivariate dependent data.
Computational Statistics & Data Analysis, 173,
107500.
Sciacchitano, S., Capalbo, C., Napoli, C., Negro, A., De Biase, L.,
Marcolongo, A., &... (2021). Nonthyroidal illness syndrome (NTIS) in
severe COVID-19 patients: Role of T3 on the na/k pump gene expression
and on hydroelectrolytic equilibrium. Journal of Translational
Medicine, 19(1), 1–18.
Bignozzi, V., Macci, C., & Petrella, L. (2020). Large deviations for
method-of-quantiles estimators of one-dimensional parameters.
Communications in Statistics-Theory and Methods,
49(5), 1132–1157.
Candila, V., Gallo, G. M., & Petrella, L. (2020).
Mixed-frequency quantile regression with realized volatility to
forecast value-at-risk.
Candila, V., Gallo, G. M., & Petrella, L. (2020). Using
mixed-frequency and realized measures in quantile regression.
Fabrizi, E., Salvati, N., & Trevisano, C. (2020). Small area
estimation based on flexible quantile regression. Computational
Statistics and Data Analysis.
Frumento, P., & Salvati, N. (2020). Parametric modelling of
m-quantile regression coefficient functions with application to small
area estimation. Journal of Royal Statistical Society Series A,
183, 229–250.
Marinozzi, F., Carleo, F., Novelli, S., Di Martino, M., Cardillo, G.,
Petrella, L., &... (2020). 3D reconstruction model of an
extra-abdominal desmoid tumor: A case study. Frontiers in
Bioengineering and Biotechnology, 8, 518.
Maruotti, A., Merlo, L., & Petrella, L. (2020). A two-part
finite mixture quantile regression model for semi-continuous
longitudinal data.
Merlo, L., Petrella, L., & Raponi, V. (2020). Sectoral decomposition
of CO2 world emissions: A joint quantile regression approach.
International Review of Environmental and Resource Economics,
14(2-3), 197–239.
Schirripa-Spagnolo, F., Salvati, N., & D’Agostino, A. (2020). The
use of sampling weights in m-quantile random-effects regression: An
application to programme for international student assessment
mathematics scores. Journal of Royal Statistical Society Series
C, 69, 991–1012.
Borgoni, R., Carcagnı̀, A., Salvati, N., & Schmid, T. (2019).
Analysing radon accumulation in the home by flexible m-quantile mixed
effect regression. Stochastic Environmental Research and Risk
Assessment, 33, 375–394.
Chambers, R., Salvati, N., Fabrizi, E., & Silva, A. D. da. (2019).
Domain estimation under informative linkage.
Statistical Theory and
Related Fields.
https://doi.org/10.1080/24754269.2019.1653158
Chandra, H., Salvati, N., & Chambers, R. (2019). Small area
estimation of survey weighted counts under aggregated level spatial
models. Survey Methodology, 45, 31–59.
Del Sarto, S., Marino, M. F., Ranalli, M. G., & Salvati, N. (2019).
Using finite mixtures of m-quantile regression models to handle
unobserved heterogeneity in assessing the effect of meteorology and
traffic on air quality. Stochastic Environmental Research and Risk
Assessment, 33, 1345–1359.
Marino, M. F., Ranalli, M. G., Salvati, N., & Alfò, M. (2019).
Semi-parametric empirical best prediction for small area estimation of
unemployment indicators. Annals of Applied Statistics,
13, 1166–1197.
Petrella, L., Laporta, A. G., & Merlo, L. (2019). Cross-country
assessment of systemic risk in the european stock market: Evidence from
a CoVaR analysis. Social Indicators Research,
146(1-2), 169–186.
Petrella, L., & Raponi, V. (2019). Joint estimation of conditional
quantiles in multivariate linear regression models with an application
to financial distress. Journal of Multivariate Analysis,
173, 70–84.
Sobotka, F. O., Kneib, T., Salvati, N., & Ranalli, M. G. (2019).
Adaptive semiparametric m-quantile regression. Econometrics and
Statistics, 11, 116–129.
Baldermann, C., Salvati, N., & Schmid, T. (2018). Robust small area
estimation under spatial non-stationarity.
International Statistical
Review.
https://doi.org/10.1111/insr.12245
Bianchi, A., Fabrizi, E., Salvati, N., & Tzavidis, N. (2018).
Estimation and testing in m-quantile regression with applications to
small area estimation.
International Statistical Review.
https://doi.org/10.1111/insr.12267
Bignozzi, V., Macci, C., & Petrella, L. (2018). Large deviations for
risk measures in finite mixture models. Insurance: Mathematics and
Economics, 80, 84–92.
Borgoni, R., Del Bianco, P., Salvati, N., Schmid, T., & Tzavidis, N.
(2018). Modelling the distribution of health-related quality of life of
advanced melanoma patients in a longitudinal multi-centre clinical trial
using m-quantile random effects regression.
Statistical Methods in
Medical Research.
https://doi.org/10.1177/0962280216636651
Chandra, H., Salvati, N., & Chambers, R. (2018). Small area
prediction under nonparametric generalized linear mixed model.
Journal of Computational Statistics and Data Analysis,
126, 19–38.
Costantino, F., Di Gravio, G., Patriarca, R., & Petrella, L. (2018).
Spare parts management for irregular demand items. Omega,
81, 57–66.
Laporta, A. G., Merlo, L., & Petrella, L. (2018). Selection of value
at risk models for energy commodities. Energy Economics,
74, 628–643.
Marchetti, S., Berkesewicz, M., Salvati, N., Szymkowiak, M., &
Wawrowski, L. (2018). The use of a three-level m-quantile model to map
poverty at local administrative unit 1 in poland.
Journal of Royal
Statistical Society Series A.
https://doi.org/10.1111/rssa.12348
Merlo, L., Maruotti, A., Petrella, L., & Punzo, A. (2018). Quantile
hidden semi-markov models for multivariate time series. Statistics
and Computing, 32(4), 61.
Alfò, M., Salvati, N., & Ranalli, M. G. (2017). Finite mixtures of
quantile and m-quantile regression models. Statistics &
Computing, 27, 547–570.
Chandra, H., & Salvati, N. (2017). Small area estimation of
proportions under a spatial dependent aggregated level spatial models.
Communications In Statistics. Theory And Methods.
https://doi.org/10.1080/03610926.2017.1317806
Chandra, H., Salvati, N., & Chambers, R. (2017). Small area
prediction of counts under a non-stationary spatial model. Spatial
Statistics, 20, 30–56.
Marchetti, S., Giusti, C., Salvati, N., & Pratesi, M. (2017). Small
area estimation based on m-quantile models in presence of outliers in
auxiliary variables.
Statistical Methods & Applications.
https://doi.org/10.1007/s10260-017-0380-4
Mollica, C., & Petrella, L. (2017). Bayesian binary quantile
regression for the analysis of bachelor-to-master transition.
Journal of Applied Statistics, 44(15), 2791–2812.
Schirripa-Spagnolo, F., D’Agostino, A., & Salvati, N. (2017).
Measuring differences in economic standard of living between immigrant
communities in italy.
Quality And Quantity.
https://doi.org/10.1007/s11135-017-0542-3
Schmid, T., Bruckschen, F., Salvati, N., & Zbiranski. (2017).
Constructing socio-demographic indicators for NSI using mobile data.
Journal of Royal Statistical Society Series A.
https://doi.org/10.1111/rssa.12305
Chambers, R., Salvati, N., & Tzavidis, N. (2016). Semiparametric
small area estimation for binary outcomes with application to
unemployment estimation for local authorities in the UK. Journal of
Royal Statistical Society Series A, 179, 453–479.
Tzavidis, N., Salvati, N., Schmid, T., Flouri, E., & Midouhas, E.
(2016). Longitudinal analysis of the strengths and difficulties
questionnaire scores of the millennium cohort study children in england
using m-quantile random effects regression. Journal of Royal
Statistical Society Series A, 179, 427–452.
Bianchi, A., & Salvati, N. (2015). Asymptotic properties and
variance estimators of the m-quantile regression coefficients
estimators. Communications in Statistics - Theory and Methods,
44, 2416.
Bianchi, A., & Salvati, N. (2014). Asymptotic properties and
variance estimators of the m-quantile regression coefficients
estimators.
Communications in Statistics - Theory and Methods.
https://doi.org/1080/03610926.2013.791375
Chambers, R., Dreassi, E., & Salvati, N. (2014). Disease mapping via
negative binomial regression m-quantiles. Statistics in
Medicine, 33, 4805–4824.
Dreassi, E., Ranalli, M. G., & Salvati, N. (2014). Semiparametric
m-quantile regression for count data. Statistical Methods in Medical
Research, 23, 591–610.
Giusti, C., Tzavidis, N., Pratesi, M., & Salvati, N. (2014).
Resistance to outliers of m-quantile and robust random effects small
area models. Communications in Statistics - Simulation and
Computation, 43, 549–568.
Chandra, H., Salvati, N., Chambers, R., & Tzavidis, N. (2012). Small
area estimation under spatial nonstationarity. Journal of
Computational Statistics and Data Analysis, 56, 2875–2888.
Fabrizi, E., Salvati, N., & Pratesi, M. (2012). Constrained small
area estimators based on m-quantile methods. Journal of Official
Statistics, 28, 1–15.
Giusti, C., Marchetti, S., Pratesi, M., & Salvati, N. (2012). Robust
small area estimation and oversampling in the estimation of poverty
indicators. Survey Research Methods, 3, 155–163.
Salvati, N., Tzavidis, Pratesi, M., & Chambers, R. (2012). Small
area estimation via m-quantile geographically weighted regression.
TEST,
21, 1–28.
https://doi.org/10.1007/s11749-010-0231-1
Tzavidis, N., Salvati, N., Chambers, R., & Chandra, H. (2012). Small
area estimation in practice: An application to agricultural business
survey data. Journal of the Indian Society of Agricultural
Statistics, 66, 213–238.